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S1. Calculation of the evanescent field ratio and the effective sensing 
length 

The external confinement factor Γclad, representing a measure of interaction of the 

guided mode with the cladding, is quantified via perturbation theory: 
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Where ng is the group index, nclad is the cladding refractive index, ε(x, y, z) is the 

permittivity, and E(x, y, z) is the electric field. In this work, ng is preliminarily 

calculated at around 3.83 for the fabricated structure. In 3-D FDTD simulation, a cuboid 

monitor with a = 1 μm, b = 7.5 μm, c = 10 μm is placed to extract spatial distribution 

of E(x, y, z), as shown in Figure S1. The mesh resolution is 100 pixel/μm along the x-

direction, 100 pixel/μm along the y-direction, and 75 pixel/μm along the z-direction. 

Based on the simulation, the Γclad is calculated as 24.3%.  

 
Figure S1. Schematic illustration of the 3D FDTD simulation. 

 

The waveguide sensor follows Beer’s law: 

                                              𝑇𝑇 = 𝐼𝐼toluene 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 = exp(−𝛼𝛼𝛤𝛤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿)⁄  

where T is the transmittance, Itoluene is the detector signal under the toluene-N2 mixture. 

Iref is the signal under pure N2, α is the absorption coefficient of toluene vapor. L is the 

physical waveguide length, which in our case, is 28.4 mm. C is the concentration of the 

analyte. Therefore, the effective sensing length is calculated as Leff = Γclad L= 6.9 mm. 

 



S2. Summary of MIR grating couplers 

Table S1. Summary of MIR grating couplers 

Platform Central 
wavelength (µm) 

Maximum 
coupling 

efficiency (dB) 

1-dB bandwidth 
(nm) 

3-dB bandwidth 
(nm) Ref 

Suspended Si 
(from SOI) 6.63 -7 170 304 This work 

Ge-on-Si 6.95 N/A N/A 500 [S1] 

Ge-on-Si 5.2 -5 N/A 100 
[S2] 

Ge-on-SOI 5.2 -4 N/A 180 

Suspended Si 
(from SOI) 2.75 -6.07 N/A N/A [S3] 

SOI 2.1 -3.8 N/A 90 [S4] 

SOI 
3.75 -7.37 152 263.5 

[S5] 
3.68 -6.48 N/A 199 

Si-on-Sapphire 3.43 -5.38 N/A N/A [S6] 

SOS 2.75 -4.87 N/A N/A [S7] 

Suspended Ge 2.37 -11 58 N/A [S8] 

Ge-on-Si 3.8 -11 70 N/A [S9] 

Ge-on-Si 3.8 -16.5 70 N/A [S10] 

 

In Table S1, we summarize the operating wavelengths and performances of reported 

MIR grating couplers. It is worth noting that few of the reported grating couplers 

operate in the LWIR range. Our work contributes to the supplementary of functional 

blocks in this regime based on the SOI platform. The proposed grating coupler has a 

maximum coupling efficiency of -7 dB and 3-dB bandwidth of 304 nm, centered at 6.63 

μm. As Table S1 depicted, the performance of our grating coupler is comparable to that 

of others in the MIR, achieving a balance between the coupling efficiency and the 

bandwidth. 



S3. Summary of MIR waveguide platforms 

Table S2. Summary of MIR waveguide platforms 

Platform Wavelength 
(µm) 

Propagation 
loss 

(dB/cm) 

Bending 
loss 

(dB/bend) 

Demonstrated building blocks 

Ref 

GC Y 
junctions DC Ring 

resonator MMI 

Suspended 
Si 6.4 – 6.8 4.3 ± 0.39 0.06 √ √ √   This 

work 

Suspended 
Si 7.67 3.1 0.08      [S11] 

Ge-on-Si 6.7 – 7.45 < 5 N/A √     [S1] 

Ge-on-Si 6.85 – 11.25 < 10 N/A      [S12] 

Ge-on-Si 7.5 – 8.5 2.5 N/A √    √ [S13] 

Graded 
SiGe 8.5 < 3 N/A      [S14] 

Suspended 
Ge 7.67 2.65 N/A      [S15] 

Ge-Sb-Ge 7.7 2.5 N/A      [S16] 

Si-on-CaF2 5.1 – 5.3 3.8 < 0.1    √  [S17] 

Si-on-
Sapphire 5.4 – 5.6 4.0 ± 0.7 N/A    √  [S18] 

Diamond 5 – 7 ~ 5.5 N/A      [S19] 

Suspended 
Si 4.24 3 ± 1 N/A      [S20] 

SOI 3.88 3 0.07   √   [S21] 

Si-on-
Nitride 3.39 5.1 N/A      [S22] 

Ge-on-
Nitride 3.73 7.86 N/A      [S23] 

Si-on-
Porous-Si 3.39 3.9 0.006      [S24] 

AlN-on-
Insulator 3.65 – 3.9 8.2 0.2   √ √ √ [S25] 

 
(GC: grating coupler; DC: directional coupler; MMI: multi-mode interferometer) 



We also summarize the reported MIR waveguide platforms in Table S2. Compared with 

previous works, our platform shows comparable propagation loss and bending loss but 

not recorded high. While the simulation results suggest propagation loss of only 1.5 

dB/cm, the extra loss is possibly attributed to the surface roughness produced in our 

etching process. Suspended Si waveguides developed in Ref. S11 show a propagation 

loss of 3.1 dB/cm, in which the material loss of Si contributes ~2.1 dB/cm. Therefore, 

by further optimizing the fabrication process of our platform, we believe a lower 

propagation loss could be achieved. 

Apart from the loss characterization, the development of various functional building 

blocks is essential for the realization of integrated photonic systems. As presented in 

Table S2, despite the demonstrations in other platforms or at lower wavelengths, the 

development of LWIR functional building blocks in the suspended Si platform, which 

origins from the most mature SOI, is still lacking. Motivated by this, we demonstrated 

LWIR suspended Si grating couplers, Y-junctions, and directional couplers for the first 

time with good performance, aiming for the system integration of LWIR gas sensors. 

Besides, the comprehensive study of SWG cladding on sensing enhancement also 

guarantees the achieved low LoD in our experiment. 

 

 

 

 

 

 

 

 

 

 

 

 



S4. Influence of the flow rate 

In our experiment, the flow rate of the gas is fast enough to deliver toluene to the 

vicinity of the waveguide. To verified this, we have measured the response times and 

recovery times under different flow rates of 4 L/min and 8 L/min, respectively, as 

shown in Figure S2. Compared with the results under 2 L/min flow rate as shown in 

Figure 6C and D, no significant change in either response time or recovery time is 

observed in the experiment, indicating the response time and recovery time are mainly 

limited by the nanophotonic platform. 

 

Figure S2. (A) Response time and (B) recovery time under the flow rate of 4L/min; 

(C) response time and (D) recovery time under the flow rate of 8 L/min. 

 

 

 

 

 

 



S5. Analysis of the off-chip noises 

In our experiment, the off-chip noise floor mainly consists of MCT detector noise and 

laser power fluctuation. Among these, the detector noise almost keeps constant 

regardless of the signal power, while the laser power fluctuation is proportional to the 

laser intensity. We have characterized the relationship between noise level and signal 

intensity further to identify noise components, as plotted in Figure S3. The slope of the 

linear fitting suggests that the laser power fluctuation occupies ~0.038% of the signal, 

while the intercept mainly represents the detector noise of ~12.5 μV. Therefore, for our 

typical measurement with signal power between 5 × 104 μV and 1 × 106 μV, the noise 

attributes to the laser fluctuation is around 19 μV – 380 μV. This means most of the 

measured noise attributes to the laser fluctuation at a higher signal intensity. Therefore, 

by employing a low-noise light source, we can further reduce the LoD of our platform 

to several ppm. 

 

Figure S3. The noise level as a function of the signal measured in our system. The 

slope of the linear fitting suggests a laser power fluctuation of 0.038% of the signal, 

while the intercept suggests a constant photodetector noise of ~12.5 μV. 
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